Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Analysis of muscle architecture, traditionally conducted via gross dissection, has been used to evaluate adaptive relationships between anatomical form and behavioral function. However, gross dissection cannot preserve three‐dimensional relationships between myological structures for analysis. To analyze such data, we employ diffusible, iodine‐based contrast‐enhanced computed tomography (DiceCT) to explore the relationships between feeding ecology and masticatory muscle microanatomy in eight dietarily diverse strepsirrhines: allowing, for the first time, preservation of three‐dimensional fascicle orientation and tortuosity across a functional comparative sample. We find that fascicle properties derived from these digital analyses generally agree with those measured from gross‐dissected conspecifics. Physiological cross‐sectional area was greatest in species with mechanically challenging diets. Frugivorous taxa and the wood‐gouging species all exhibit long jaw adductor fascicles, while more folivorous species show the shortest relative jaw adductor fascicle lengths. Fascicle orientation in the parasagittal plane also seems to have a clear dietary association: most folivorous taxa have masseter and temporalis muscle vectors that intersect acutely while these vectors intersect obliquely in more frugivorous species. Finally, we observed notably greater magnitudes of fascicle tortuosity, as well as greater interspecific variation in tortuosity, within the jaw adductor musculature than in the jaw abductors. While the use of a single specimen per species precludes analysis of intraspecific variation, our data highlight the diversity of microanatomical variation that exists within the strepsirrhine feeding system and suggest that muscle architectural configurations are evolutionarily labile in response to dietary ecology—an observation to be explored across larger samples in the future.more » « less
-
Saha, Goutam (Ed.)Past research has shown that growth mindset and motivational beliefs have an important role in math and science career interest in adolescence. Drawing on situated expectancy-value theory (SEVT), this study extends these findings by investigating the role of parental motivational beliefs (e.g., expectancy beliefs, utility values) and parent growth mindset in math on adolescent career interest in math-intensive fields (e.g., mathematics, computer science, statistics, and engineering; MCSE) through adolescent motivational beliefs in math. Structural equation modeling was used to test the hypothesized model using data from 290 adolescents (201 girls, 69.3%;Mage= 15.20), who participate in informal STEM (science, technology, engineering, mathematics) youth programs, and their parents (162 parents, 87.7% female) in the United Kingdom and the United States. As hypothesized, adolescent expectancy beliefs, utility values, and growth mindset in math had a significant direct effect on MCSE career interest. Further, there was a significant indirect effect of parental expectancy beliefs in math on MCSE career interest through adolescents’ expectancy beliefs. Similarly, there was a significant indirect effect from parental utility values in math to MCSE career interest through adolescents’ utility values. The findings suggest that parents’ math motivational beliefs play a critical role in adolescent math motivational beliefs and their career interest in math-intensive fields.more » « less
An official website of the United States government
